简介
相对于synchronized
关键字,ReentrantLock
具备以下特点:
- 可中断
- 可设置超时时间
- 可设置为公平锁
- 支持多个条件变量
源码实现
可重入锁的实现上,主要关注两点:
-
可重入线程的再次获取锁的处理
-
可重入锁的释放机制
类的继承关系
ReentrantLock
实现了Lock
接口,Lock
接口定义了锁的通用方法。
public class ReentrantLock implements Lock, java.io.Serializable
成员变量
sync
代表当前ReentrantLock
使用的获取策略。
private final Sync sync;
private static final long serialVersionUID = 7373984872572414699L;
构造方法
- 无参构造方法
- 默认是非公平策略
- 有参构造方法
- 传入
true
使用公平策略。
- 传入
/**
* Creates an instance of {@code ReentrantLock}.
* This is equivalent to using {@code ReentrantLock(false)}.
*/
public ReentrantLock() {
sync = new NonfairSync();
}
/**
* Creates an instance of {@code ReentrantLock} with the
* given fairness policy.
*
* @param fair {@code true} if this lock should use a fair ordering policy
*/
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
获取锁的策略
ReentrantLock
内部有三个内部类,其中Sync
是其它两个类NonfairSync
和FairSync
的父类,分别代表着非公平策略和公平策略。
两者之间各有优缺点:
- 公平策略:频繁进行上下文切换,造成较大的资源消耗。
- 非公平策略:存在线程饥饿问题,但是与公平策略相比,少量的上下文切换保证了更大的吞吐量。
Sync
继承自AbstractQueuedSynchronizer
,实现了对state
字段的修改操作。
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = -5179523762034025860L;
/**
* Performs {@link Lock#lock}. The main reason for subclassing
* is to allow fast path for nonfair version.
*/
abstract void lock();
/**
* Performs non-fair tryLock. tryAcquire is implemented in
* subclasses, but both need nonfair try for trylock method.
*/
//非公平方式尝试获取锁
final boolean nonfairTryAcquire(int acquires) {
//获取当前线程
final Thread current = Thread.currentThread();
//获取AQS的state状态
int c = getState();
//为0表示暂无线程占用锁
if (c == 0) {
//通过CAS设置state
if (compareAndSetState(0, acquires)) {
//设置成功之后,设置当前线程独占
setExclusiveOwnerThread(current);
return true;
}
}
//如果当前线程拥有锁,则表示进行重入
else if (current == getExclusiveOwnerThread()) {
//添加重入次数
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
//尝试释放锁资源,全部释放则返回true
protected final boolean tryRelease(int releases) {
//c是释放后的资源量
int c = getState() - releases;
//如果当前线程不是占有锁的线程,抛出异常
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
//free是全部释放的标识
boolean free = false;
//如果c = 0,说明全部释放资源,可重入环境
if (c == 0) {
//设置全部释放标识
free = true;
//置空独占线程
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
//判断资源是否被当前线程占有
protected final boolean isHeldExclusively() {
// While we must in general read state before owner,
// we don't need to do so to check if current thread is owner
return getExclusiveOwnerThread() == Thread.currentThread();
}
//生成一个条件
final ConditionObject newCondition() {
return new ConditionObject();
}
// Methods relayed from outer class
//返回占用锁的线程
final Thread getOwner() {
return getState() == 0 ? null : getExclusiveOwnerThread();
}
//如果锁被线程占有,则返回state
final int getHoldCount() {
return isHeldExclusively() ? getState() : 0;
}
//判断锁是否被线程占有
//state不等于0则锁被线程占用
final boolean isLocked() {
return getState() != 0;
}
//自定义反序列化逻辑
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
setState(0); // reset to unlocked state
}
}
NonfairSync
NonfairSync
表示是非公平策略获取锁。
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
//获得锁
final void lock() {
//CAS操作设置state为1
if (compareAndSetState(0, 1))
//CAS设置成功,则设置独占进程为当前进程
setExclusiveOwnerThread(Thread.currentThread());
else
//锁已经被占用,或者set失败
//独占方式进行获取
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
FairSync
采用公平策略获取锁。
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
//调用acquire方法,以独占方式获取锁
final void lock() {
acquire(1);
}
//尝试获取公平锁
protected final boolean tryAcquire(int acquires) {
//获取当前线程
final Thread current = Thread.currentThread();
//获取AQS的state
int c = getState();
//如果当前没有线程占有锁
if (c == 0) {
//判断AQS Queue是否有线程在等待
//如果没有则直接通过CAS获取锁资源
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
//设置当前线程为独占线程
setExclusiveOwnerThread(current);
//获取成功
return true;
}
}
//如果当前线程已经占有锁,则更新可重入信息
else if (current == getExclusiveOwnerThread()) {
//更新可重入信息
int nextc = c + acquires;
//检查边界
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
核心方法
lock
调用sync.lock()
public void lock() {
sync.lock();
}
lockInterruptibly
响应中断的获取锁的方法,调用AQS.acquireInterruptibly()
完成。
public void lockInterruptibly() throws InterruptedException {
sync.acquireInterruptibly(1);
}
public final void acquireInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (!tryAcquire(arg))
doAcquireInterruptibly(arg);
}
tryLock
非公平方式尝试获取锁,调用sync.nonfairTryAcquire(1)
完成。重载方法提供了超时策略,同时响应中断。
public boolean tryLock() {
return sync.nonfairTryAcquire(1);
}
public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}
public final boolean tryAcquireNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
return tryAcquire(arg) ||
doAcquireNanos(arg, nanosTimeout);
}
unlock
调用sync.release(1)
完成unlock()
操作。
public void unlock() {
sync.release(1);
}
总结
ReentrantLock
的核心功能主要通过内部类Sync
完成。而Sync
继承自AQS
,通过AQS
中的Sync Queue
完成对线程排队的功能。ReentrantLock
的公平策略和非公平策略通过另外两个内部类FairSync
、NonfairSync
实现。